7 AD-A132 881 A STUDY OF SOFTWARE FAILURES AND RECOVERY IN THE MVS
OPERATING SYSTEM({U) STANFORD UNIV CA CENTER FOR
RELIABLE COMPUTING P VELARDI ET AL. JUL 83 CRC-TR-83-7
UNCLASSIFIED ARO-18690.6-EL DAAG29-82-K-0105

B 22
I

I I

T =
il = o5

(EYTEST

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963~ A

e —

Unclassified /‘A’
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) -

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
7. REPORT NUMBER

2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
CRC Tech. Rpt. 83-7

4. TITLE (and Subtitle) s

. TYPE OF REPORT & PERIOD COVERED
A Study of Software Failures and Recovery in Interim Tech. Report
the MVS Operating System

. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

’ﬂ Paola Velardi and Ravishankar K. Iyer ARO DAAG-29-82-K-0105
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::ggRakwoel{.KEUElNTT‘NPURMOBJEEgg' TASK
Center for Reliable Computing
Computer Systems Laboratory DD Form 2222, Project No.
Stanford Universitﬂiérmnford, CA 94305 P-18690-EL
1. CONTRO IPA? “&ME OADDRESS 12. REPORT DATE
U"?;st (')f;fice gox 12211 ” July 1983

13. NUMBER OF PAGES

i . NC 2717
Research Triangle Park :

14. MONITORING AGENCY NAME & ADDRESS(/(different from Controlling Oftice) 15. SECURITY CLASS. (of this report)

Mr. James W. Gault

A0-

Unclassified
Electronis Division
U . S . Amy ResearCh Offi ce 1Sa, gg&ésg!&l{lCATION/DO'NGRADING
P. 0. Box 12211, Research Triangle Park, NC 27704
‘. 16. DISTRIBUTION STATEMENT (of thie Report)

¢ relvare’ distribution

Approved for publh
unlinited.

17. DISTRIBUTION STATEMENT (of the sbstract entered in Block 20, If different from Report)

N/A

18. SUPPLEMENTARY NOTES
THE WEW, DPINIONS, AND /IR FIRDINAS CONTAIMER IN THIS REPORT
ARE THOARE OF 7117 A wu Sh QY AMS SUALLE TOT BF CONSTRUVEDAS
AN OFFICI/1 TE0 # e 0f THE ARMY FOSITION, POLICY. OR DE-
CISIOM, UL ESH 10 CRLAMNLTED 8Y (TR D ICUMINTATION,

19. KEY WORDS (Continue on reverse side Il necessary and identily by block number)

Software reliability, fault tolerance, recovery, statistical analysis

20. ABSTRACT (Coutiaue an reverse side If nececeary sd identity by block number)

This paper describes an analysis of system-detected software errors on the MVS
operating system at the Center for Information Technology (CIT), at Stanford
University. The analysis determines the most common error categories and
relates them to the program in execution at the time of the error. The severity
of the error is measured by evaluating the criticality of the program for
continued system operation. The system recovery and error correction features

are then analyzed and an estimate of the system fault tolerance to errors of
different levels of severity is made..

DD , 5> W73 eoimon oF 1 wov 68 1s omsoLETE

DTG FILE COPY

assified
8 3 (() 9 O 0 2 q SECUMTY cussmcnvgg%\r THIS PAGE (When Date Entered)
€ -t []

Lr

PR —m—— P T .

jo

- L e —————

-

enter for
eliable

omputing

A Study of Softuare Failures and Recovery in the MVS Operating System

Paola Velardi and Ravishankar K. iyer

CRC Technical Report No. 83-7
(CSL TN No. 83-226)

July 1983

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California 94305

This work was supported in part by the Department of the Army under
Contract Number DAAG29-832-K-0105, the Ugo Bordoni Foundation and the
Italian National Research Council (CNR).

Copyright (<) 1983 by the Center for Reliable Computing, Stanford
University. AVl rights reserved, including the right to reproduce this
report, or portions thereof, in any form.

r—

A Study of Softuare Failures and Recovery in the MVS Operating System

Paola Velardi and Ravishankar K. lyer

CRC Technical Report No. 83-7
(CSL TN No. 83-226)

July 1683

CENTER FOR RELIABLE COMPUTING
Computer Systems Laberatory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California 94305

ABSTRACT

This paper describes an analysis of system-detected software errors on
the MVS operating system at the Center for Information Technolegy (CIT),
at Stanford University. The analysis determines the most common error
categories and relates them to the program in execution at the time of
the error. The severity of the error 1is measured by evaluating the
criticality of the program for continued system operation. The system
recovery and error correction features are then analysed and an estimate
of the system fault tolerance to errors of different levels of severity
is made.

Keywords: Softuare reliability, fault tolerance, recovery, statistical
analysis

it

CONTENTS
Abstract L s e e e e e e h e e e e e e e e

1. INTROBUCTION & v v v v vt e s e e v s e e e e e ew o 1
2. RELATED RESEARCH AND MOTIVATION ¢ ¢+ v « . . 3
3. SOFTWARE ERROR MEASUREMENT: HOW IT WORKS 5 :L
4. BUILDING THE DATA BASE ¢ v v v v v v v v v v v v v o o 7

Processing the Software Error Data & ;
5. BASIC STATISTICS . . . & ¢ v 4 v v v v 6 o v v o e 4 v e v v« 12 ’

6. ANALYSIS OF THE DATA ¢ « ¢ v ¢« ¢ v o o v v o v o o« 16

Error classification ¢ . ¢ v ¢ v v 0 v e e e e
Error statistics Lt bt h e e e e e e e e
Analysis of recovery management
7. RELATING ERROR TO SYSTEM FUNCTION ¢« ¢« v v ¢« v o o« &
8. MEASURES OF SYSTEM FAULT TOLERANCE AND RELIABILITY
9. CONCLUSIONS . & & ¢ ¢t 4 v et e e o s o o o o o v o e o s o

10, ACKNOWLEDGMENTS ¢ . & v ¢ v o v v o o o v s o o o &

REFERENCES ¢ ¢t ¢ v ¢ e i i it et e e e e e e e e e

Appendix

A. TABLES ARD PLOTS ¢ . ¢ ¢ v v v v v v v v vt e e e

B. MVS ERROR DETECTION AND RECOVERY PROCESSING

Error Detection 0 0 0 0t e h e e e e
Recovery Processing ¢ v ¢ ¢ ¢ v o + ¢ 4 4 e e e o

FIGURES

Figure

1. Sample of softuare errors

2. Clustering statisties
3. Frequency plot of softuare errors by month
4. Hour of day plot of softuare errors
5. Frequency plot of resource management errors by month .
6. Frequency plot of storage and programming exceptions by
7. Frequency plot of deadlocks by month .

8. Software handling of softuware errors on MVS . e e e

month .

ve

13
14
36
. 36
36

45

iii

]
TABLES
Jable page
1. Statistics on software errors R K
2. Type of error detection 15
3. Distribution of error categories during the two periods . 18
4 Provision of recovery routines by error type 21
5. Effectiveness of the recovery by error type 22
6. Recovery management ¢« ¢ 4 25
7. Effect of recovery routines for critical jobs 26
3. Mean time for error handling (Seconds) 29
9. Average failure rate (Failuress/1000 Hours) 28
10. Fault tolerance v s e e« . . 30
1. Job classification 0.0 .. 37
12. Job functions and type of erFor 37
13. Mean time for error handling (Seconds) 38
14. Fault tolerance & & ¢ v t 4t 4« v e e e e .. 39
15. Event that caused program termination 42
16. Examples of ABEND reason codes 4

17. Data on the recovery process « ¢« « + +« « . 45

1. INTRODUCTION

The design of reliable and fault tolerant softuare systems is one of the
most important issues facing computer designers today. Computer soft-
ware cost and reliability are the major problem areas affecting sophis-
ticated systems. An important reason for this is that the processes
affecting a softuare system are highly complex and interactive. Theo-
retical models can only deal with a limited range of problems. 1t is,
most often problems outside the range of these modeis that cause the
most severe malfunctions. Thus, there is no better substitute, at this
stage, for results based on actual measurements and experimentatioh
[curtis 80]. Such studies however are few and far betueen [Benning 80].

This paper presents results of one such analysis conducted on the MVS
operating system on the IBM 3081 at the Center for Information Technol-
ogy (CIT) at Stanford University. CIT 1is the main campus computation
facility. It is used for production programs (payrolls and administra-
tion), student and research projects, and for general purpose computing.
The installation consists of two IBM 308! processors which run the MVS
operating system. The two processors are loosely coupled, e.g., they
have distinct control programs and different 1/0 configurations. Oon a
typical day, the tuo systems support around 500 users and run approxi-
mately 4000 batch jobs.

The general objective of this study was to determine the causes of
softuare errors (recoverable and non-recoverable) in a fully operational
production environment. We wished to understand the softuare problems

and attributes that affect the correct handling of adverse system condi~

. tions. The data on error detection and recovery is automatically logged

- * * R

2

by the operating system. Thus it was possible to investigate not only
the general question of softuare reliability but also examine the autoe- {
matic system recovery features. 1In particular the following points were
addressed:

1. What are the most common types of softuware errors in a fully

operational environment and their relative frequencies?

2. uhat is the impact of the errors on the system?

3. Houw robust is the system in recovering from different types of

errors?

4. What inferences can be drawn from the analysis in relation to the

system fault tolerance and recovery features?

The approach adopted was to start with a substantial quantity of high
quality data on all softuare errors, (recoverable and non-recoverable).
An error collection mechanism which selected and filtered the rau data
so as to cluster records referring to the same error, uas developed. An
analysis of the clustered data was then performed to determine the most
common types of system errors and their effect on system integrity.
Finally, the system fault tolerance and recovery features were evaluated
by measuring their ability to successfully recover from system problems

of various levels of severity.

In our analysis ue differentiate betueen the terms "error™ and "fail-
ure®, A failure is a softuare Merror"™ which causes the termination of
the system (i.e., a system failure). Thus an error, in general, may or
may not result in a failure.

Before describing this work in detail, an overview of related

research in this area is presented.

2. RELATED RESEARCH AND MOTIVATION

Designing harduare systems that tolerate faults is relatively wuell
understood, at least from a theoretical viewpoint. Houwever, the problem
of softuare fault tolerance has yet to be uell investigated [Hecht
80a,b]. A reason for this is that neither the error generation process
nor the prediction problem are easy to comprehend, although the SIFT
studies have been an important contribution [Wensley 78], [Melliar-Smith
81].

The term "softuware reliability model™ is usually taken to mean mathe-
matical models for assessing the reliability of software (in terms of
statistical parameters such as Mean Time Betueen Failures) during the
development, debugging or testing phases. A feu of these models have
also been applied in follou-up operational phases. Several competing
models have appeared in the literature [Musa 1980], and a number of
authors have attempted to analyse their suitability. An appreciation of
the extent and nature of this discussion can be obtained from [Goel 80].
The main difficulty with these approaches 1is tha%t, although each model
appears to be valid within its oun assumptions, there is insufficient
experimental evidence available for its large scale validity.

Research most closely related to the present study is in the area of
analysis of errors and their causes in large softuare systems. [Endres
75) discusses and categorises errors and error frequencies during the
internal testing phase of the IBM DOS/VS system. In [Thayer 78] data
collected from four large softuare development projects is analysed.

[Hamilton 78] applies the well known execution time model (Musa 80] to

measure the operational reliability of computer center softuare, and

4

(6lass 80] examines the occurrence of persistent bugs and their causes
in operational software. Another useful study is [Maxwell 78], uhirh
tabulates and examines error statistics on softuare.

None of these studies tries to relate system reliability or the error
frequencies to the usage environment of the softuware itself in a system-
atic manner. Results based on such measurements are essential in order
to evaluate the system fault tolerance and automatic recovery features.
The argument for adopting a particular approach is more convincing if
backed by experiments demonstrating its usefulness.

In an early study of failures at the SLAC (Stanford Linear Accelera-

tor Center) computation facility, [Butner 80] and [lyer 82al] found a
strong correlation betueen the occurrence of failures and the level of
system activity at the time of failure. A more detailed and accurate
analysis of failures on a VM/370 system (in service at SLAC since Febru-
ary 1981) confirmed this relationship [Rossetti 82].

The operational phase of mature software is somewhat different from
the development, debugging, and testing phases. A typical situation is
one where frequent changes and updates are installed either by the
installation programmers or by the vendor. Often the vendor will
install a change, to fix an error {found at some other installation,
without any notification to the installation management. In a sense the
system being measured represents an aggregate of all such systems main-
tained by the vendor.

It is clear that more experimental studies on operational softuare
are necessary before a sound analytical basis can be developed for soft-

ware reliability evaluation. The MVS system on the IBM 3081 at CIT pro-~

5

vided an ideal opportunity in this regard. The operating system auto-

; matically collects information on error detection and correction. The
state of the machine at the time of the error is also recorded. The
following section provides 2 overview of the error handling and collec~-

% tion mechanism on MVS.

3. SOFTWARE ERROR MEASUREMENT: HOW IT WORKS
This study concentrates on all softuare errors detected by the operating
system. In addition to error detection, the operating system also pro-
vides for error correction through either retry, or a job or task termi-
nation. There is a close relation betueen the harduare and the operat-
ing system in this area. An overview of softuware error detection and
k) recovery appears in [IBM 80]; detailed descriptions may be found in [IBM
81] and [18m 791.
There are four different types of softuare problems for which a soft-
ware record is generated:

1. Proqram check - indicates a harduare detected softuare error.

2. lIlnvalid supervisor call - indicates a supervisor service request

issued by an unauthorized program.

3. Program gbnormal termination (ABEND) - indicates an abnormal ter-
mination (by the system or by the program itself) of the execut-
ing program.

4. Restart key depressed - indicates an operator detected anomaly
and is caused by a restart operation.

These events cause the normal execution of the program to be inter-

rupted, and the control to be transtered to a system control program

{ o>

6

called the Recovery JTerminatijon Manager (RIM). Specifically, the RTM
supervises the error handling process either by giving control to a
recovery routine or by itselt providing for error recovery in the
absence of a recovery routine. In either case recovery can be in the
form of a job or task termination or a retry. A task is a module or a
sub-program of a job.

There are two types of recovery routines:

1. Functional Recovery Routines (FRR): These are provided in MVS
for critical system programs.

2. Task Recovery Routines: These may be written for critical user
and subsystem programs using an MVS facility called Extended Sub-
task Abend E£xit (ESTAE).

At the end of the recovery process, the RTM invokes the error recording
routines to generate a software record of the incident. The data set
containing this infcrmation is called SYS1.LOGREC. Generally, FRR rou-
tines will write a record to LOGREC while ESTAE routines will generate a
record only if the programmer has specifically provided for this in the
routine.

A standard header on the softuare record consists of a time-stamp,
the model and serial number of the CPU where the error occurred, and the
name of the jobstep involved. In addition, the record contains data on
the type of detection, the event causing the detection and the detailed
symptom of the error. 0Oata describing the steps in the recovery process
is also provided. A sample of the error data ie given in Fig. 1.

At CIT, softuware records have been systematically generated and
archived since March 1982. The next section describes the processing

performed on the raw data to make it usable for analysis.

oW L
e e B e,

7

ops TINESTNP Jop STYPE cry CPUMODEL EVENT SYNPTON RECMAME RESULT

1 1SAPR82: 14113145 CSTSFROZ MWWDSISRR 220162 308t PROGCHK A0OCNO 1ECVXFRR CONTTERR
;z: |:Ane§| ter13:52 CS76PRBZ PNOSUELR 20162 3081 PROGCHX 400000 IECVXFRR CONTTERM
320 15APPA2 114314312 coLer132 MWD SUERR 229162 308t PROSCHK AQ00R0 IECVXFRR CONTTERM
322 1SAPRB2: 14114213 CoLEP132 H:DSHERR aietel o8t FROZCIK A00D09 JECVXFRR CONTTERN
323 1SAFRE2t 14214183 COLBP132 HKYSHEPR {3014 3089 PROGCHX A00000 IECVXERR CONTTCRM
3% 1SAPRS2: 14314013 INIT MWCSHERR 20162 3001 PROSCHK AD0000 CONTTERM
335 152PF82:114:16:13 INIT HIDSWERR 2201462 Jom PROGCHK A00000 CONTTERN
326 1SAPRBI: 16116115 PRCSS HIC SWERR 2201862 pLLT] PRCGONK AD0ODO TECVXFRR CONTTERN
327 1SAPRS2 14116:27 MSTRJICL HUDSWERR 200162 3081 PROGCHX 0C1000 CONTTERN
328 15APRE2:14:161328 ESGTAX HIDSKERR 23162 3081 PROGCHK A00000 IECYXFR® CONTTERN
329 1S.FP22:14: 14132 MSTRJCL KWL SIIERA 200162 30981 PROSCHK acrp00 TEESELSS RETRY
330 15APRS2:16114:32 MSTRJCL HIDSWERR 220182 3081 PROGCHK 0C1000 IEESDesS CONTTERM
33 1SAPRB2:1t4:14: 36 MSTRJICL HWDSHEMR 0162 3031 PROGCHK oc1000 RETRY
iz tSAPRE: 16: 141586 bes MNDEHERR 20162 3001 PROGCHK AROOCD IECVXFRR CONTTERM
333 15A7R82:14:15: 11 DEAZFLND HDEREPR el 3081 PROGCHK A0D000 IECVXFRR CCHTTERN
334 154PRA2:14:15: 11 INIT MW S 1ZRA 20182 3081 PROGCIK A0ooO0 CONTTERR
338 1SAPRB2:163:15:21 D9S IO SHERR 20162 o8t PROGCHK AD00OD IECVXFRR COLTTERN
336 1SAPRS2:14:15:27 ESTRJCL HUDSWERR 20142 3081 PROGCHX oc1000 JEESEOOS CONTTERM
3377 15APRB2316115:27 MSTRJCL HIKOSWERR 220162 3001 PROGCHK ¢C1000 IEESB66S RETRY
334 1SAPR82:14115:29 KSTRJCL T SHERR 20162 3001 PROGCHK 0C1090 RETRY
339 154PRE2: 14115162 HSTRJCL NNQSWERR 220162 3081 FROGONK ocio00 CONTTERN
349 1SAPROZ: 14116100 MSTRJCL HIISHLRR 29182 3081 PROGCHK oci1o000 TEESDesS CONTTERN
36t 154FR92114:46:00 HSTRJCL HRDSWENR Wot62 3084 PROGCHK 0C1000 1EESBeS RETRY
a2 15aFP82:14:16:02 MSTRJCL HTSUIRR 30162 pL-L1] PROGCHK 01000 RETRY
343 1SAPREBI 11418104 HILTEN SWDEHIRR 220182 3081 ROUTSVC 05Co60 TEFABGES RETRY
pLT 15APRS2:16:16:04 NET HRDSKERR 220162 p111} PROGCHK ocieco ISTAPCES CONTTERM
s 154PREC: 14:16:09 MSIRJICL HITSHEFR 200t62 08¢ FROGCHK C1000 TEESDO4S RETRY
3eo ISAPRSZ: t1a:156:09 MSTRICL h=ISHERR stotel 3001 PROGCHK 0C1000 1EESDEGS RETRY
367 1SAPR82: 14116109 MSTRJCL HROSHERR 220162 3081 PROGCNK 0c1000 JEESCoeS COHTTERN
Je8 154AFRB2: 14116110 MSTRICL HROSIEIRR 20162 3081 PROGCHX 06C1000 IEESBLLS CONTTERN
Je9 154APRB21 161G bss HUWDSUZRR 28162 3081 PROGCHX ACO0OD TECVXFRR CONTTERM
389 1SAPRS2:14:16:12 NSTPJCL MIDSLERR 20162 3o PROGCHK ecio00 RETRY
351 1SAFRE2114116:12 MSTRJCL HMOSKERR 220182 3oay PROGCHK ocio00 RETRY
352 15APRB2 116116018 ORVGGSER HMDEWERR 1M 3081 PROGCHK A00000 1ECVXFRR CONTTERM
353 ISAPRS2 {41105ty INIT MNCSHERR 220162 3081 PROGCHK AQOO00 CONTTERN

Figure 1: Sample of softwara errors

4. BUILDING THE DATA BASE
An objective of this project was to make data management as automatic as
possible so that it is unnecessary to know the particulars of operating
systems, software monitors, record formats, and the like. The Statisti-
cal Analysis System (hereafter called SAS) [SAS 79) provided, in addi-
tion to its procedures for statistical analysis, a rich environment for
data handling. Initially, the raw data set (dhich is in hexadecimal
code) was compacted in order to extract the relevant information, and to
provide expianations for hexadecimal codes. Then, the records believed
to be repeated occurrences of the same problem (referred £o as error

re-occurrence) uere clustered. The result of this manipulation uas a

data set ready to be fed into statistical analysis programs.

JOBTERM

5355555555585535588 58558535858883838383

4.1 PROCESSING YHE SOFTWARE ERROR DATA

A collection of SAS programs performs the following steps:

(i) Select, Decode and Clasgifv: The rauw LOGREC data includes CPU,
channel, and device errors for all equipment in the installation. Only
the softuare records on the two IBM 3081’s were selected for this analy-
sis. In each softuare record there are a number of bits describing the
type of error, its severity, and the result of hardware and softuare
attempts to recover from the problem. The general softuare error status
indicators provided by the harduare and softuare are TYPE (of detec-
tion), EVENT (causing the detection) and SYMPTOM (code or symptom of the

error).!

(ii) Sort By Processor and Jime: To facilitate clustering in the next

step it was necessary to sort the data by CPU id (serial number) and

time of error within CPU id.

(i1i) Cluster: Clustering of recurrent errors was performed for two
reasons:

1. to obtain error distributions and statistics unbiased by error

re-occurrence.

2. to measure the extent of the re-occurrence phenomenon.
Figure 1 contains an example of a recursive error. Consider observa-
tions 329 through 331: the problem coded 0C! (an operation code excep-
tion) occurred while a task of the supervisor program MSTRJCL was exe-

cuting. This error uas detected by the harduare, and generated a

' The IBM names for these fields are [IBM 79): TYPE - HDRTYP; EVENT -
SOWERRA; SYMPTOM - SDWACMPC.

program check. The routines which handled the

later the problem re-occurred (obs. 336 - 342,
ete)d.

The example shouws that an error cannot aluays
step. The programmer or the operator might be
problem, and simply decide to rerun the program.

also be due to an error that does not cause the

necessary.

Note that more than one record can be

9

problem uWere unable to

recover, and the task affected by the error uwas terminated. Sometime

345 - 348, 350 - 351,

be isolated in a single
unable to diagnose the
Error recurrence might

termination of the pro-

gram. In this case, no action is taken by the system, and the problem
might recur later (for example, 1if it is a pattern sensitive error).
Devising a suitable clustering policy was an important step of this

work. A careful analysis of the data and extensive experimentation uas

The clustering algorithm analyses the data and merges observations
that satisfy either one of the following conditions:
1. The observations have exactly the same time stamp. This was done

to cluster records generated by the recurrence of the same error.

generated for the same

incident if more than one recovery routine is specified for the

process. This is called percolation [IBM 81].

2. The errors recur within a short time interval of each other, and

have the same SYMPTOM code. This was done to capture repetitions

of the same error. The determination of time interval to be used

involved a careful analysis of the data and some experimentation.

Finally, a time interval of 15 minutes was found to be most

appropriate.

foo

—

10

The clustering algorithm employs three steps. The unclustered data
set is first sorted by time and CPU id. The observations that satisfy
the conditions above are merged into a single record. These steps, hou-
ever, fail to merge observations which satisfy conditions 1 and 2, but
are interleaved with records referring to an apparently different prob-
lem (different SYMPTOM code). An example of this was illustrated n
Fig. 1. To get rid of this problem, observations that satisfy condition
2, but are not consecutive, are also merged into a single cluster.

The result is a set of clustered errors. Associated with each clus-
ter is information consisting of error classificatioﬁs. number of points
in the cluster (NPOINTS), time of the first (FIRST) and last (LAST)
error in the cluster, the length of the cluster (SPAN = LAST - FIRST),

< the time betueen clustered errors (TBE), and a variety of status data
provided by the hardware and operating system.

Some interesting things can be learned from a cursory analysis of the

clusters derived as stated. Summary statistics for the number of points

in a cluster (NPOINTS) and time spanned by a cluster (SPAN) are shoun
below in Figure 2. Figure 2 shous clearly that the clustering algorithm
is having an effect by gathering long bursts of errors into a few large

clusters, indicated by the maximum 340 points and 4497 seconds time

1"
original Errors: 7,197 Clustered Errors: 1562
NPOINTS SPAN (seconds)
Mean 4,60 46.8
Median 1 0.0
90th Percentile 6 51.1
Minimum 1 0.0
Max imum 340 4497.0
Percentage bar charts
80 .
]
1]
: !
[40 ! \
+ [}
; '
: 60 ;
[l [}
: 1
30 '
i :
i 40 !
i i
20! i
H . H
: ot {
[pee—]
' T e 20 ¢
10 preor i el !
1 - =)
] —oen onve]
H W wm e ' eonse
‘ foordisto oty H asene pad st
H perer R oo SO H o wmn TN e
2 5 10 50 100 0 5 10 100 1000
NPOINTS SPAN
Figure 2: Clustering statistics
span. In fact, only 19% of the observations cluster more than tuo

software records, and only 5% cluster more than 10 records. Large clus-

ters (more than 100 records) ac
length of the incident is conc

less than 5 seconds, 7% last

count for just 0.74. As far as the time
erned, about 82% of the incidents last

more than 100 seconds. and less than 12

12

have a time length greater than 1000 seconds. The table also shous that
lone errors predominate, with median cluster size of one and time span
of 2ero, showing that the clustering algorithm is not artificially forc-~
ing them together. The accompanying bar charts also shouw this behavior.
Clustering is important in error analysis to avoid biasing the results

with repeated errors from the same failing component.

" 5. BASIC STATISTICS
This section presents a preliminary analysis of the data. The time
period has been divided in tuo parts:

1. EARLY period: from March 1382 through May 1982.

2. LATE period: from June 1982 through April 1983.

The reason for this is that the system configuration was changed in June
1982, and a corresponding change was noticed in the error data. In the
EARLY period only one CPU was active, while in the LATE period the sys-
tem Yoad was shared by tuo CPUs.

Initially tuo charts uwere generated. The chart in Fig. 3 gives the
number of clustered softuare records for each month. puring the first
three months (from March to May 1982) MVS uwent into production on a 3081%
CPU, which processed the workload previously supported by tuoc IBM 3033
CPUs. The number of terminals managed by a single CPU almost doubled.
Even though this workload uas compatible with the new system specifica-
tions, a noticeably large number of problems occurred on the system. In

June 1932, a second 3081 was added. The number of reported errors was

considerably lower after June.

T » -

13

TREQJEHCY
I Eeeee
{ eeeee
o eEEEE
300 ¢ eecee
T egeee
Dot
eeee =
270« ceeee E=EARLY
| et
EEEEE
i oesere L=LATE
240+ EEELE
i oeeese
EEEsE
[
210~ EECSE
| Ee€ee reEte
! EESEE EELEE
| egEEE SEERE
189 ¢ EEEEE EEEEE
| EeeeE £EESC EEEee
t eeeee eerse Efrze
| Eeers EEEIE EETEE
150 s EEEEE EEEEE EESEE
| eeeee eeERC EEEEE
| EEEEE £IIfe EECEE L
| geeee EEERE ESEEE heseey
120 0 €€EE€ EEEEE EECEE L
o EEEEE GEEEE ELEEE ereey
| EETEE EEEEE ECEEE LULLL L
H CEEEE CELEE j11343 Lot [YRYNN
90 » 113444 (13414 EIETE LLLLL LLLtL LLeLL
| EEEEE SEEEE feERE (Ll it Wi
| EtEEE EEEEE ETEEE il T e Ll AL ALt
1 113443 EEELE 143344 LLLLL LLiLL [SYRRY LiLLlL Lt LLLLL Lt [Y4 YT
2l ¢ ECEEE 118444 £ITEL [SNNSN [NRARY [N§4EY JUNENN [RYNNY LLLLL LLLLL [YSNSY [ERNN Y
‘o | EEEEE EEEEE EEEPE LLLLL LLLLL WALL LutlL LELCL CLCeC LLete LLLee ekttt ALl
] ELEEE EELEE 113414 [NS4RY LLiLL JYS4RN JNENRY LLLLL LLLLL L Lty [YYNEN Lt [{SNNY
) 114113 TEELE EELEE il Lt LLLLL Lt LLLLL LLLLL [NYRYY JASEY N Ll [SHNNY [KNNRY
30 ¢ EREEE EEELE EEEEE [Y1983 Lbie YN LLLLL Letis [NSYRS Ll LiLLL LLekt Lot Lt
| EEEEE PEEEE ECEEE LLLLL LLWLL LLLL LLeed LLLEL LAl LWL LLLLL Gle RRLlL L
1 (13134 ESSEE EELEE LLLLL Lt [SNNN TN LLLLL Lt JYUNNY LLLLL [SNEEY iLLtL [§ENEN [YEERY
1

tLELE CEEEE ELEEE (YUY RY LLiLL JRYSNY LLLLL [SYNRY [SUNNN LLLiL [SNRVY [RENNY [YYNNE 15894 %

MARs: APASZ navs2 Jume2 Juiez AUS82 SEP82 ocTe2 NOVeZ drcer JANSY FERSY naRS Y APRS3

Figure 3: Frequency plot of softuare errors by month

Figure 4 shous a histogram of the percentage of softuare errors by
the hour of day. The histogram has been obtained by averaging the daily
observations over the entire period of study. This chart appears to
follow rather closely the typical interactive load at CIT. 1t also com-
pares quite favorably with a similar plot of software failures, obtained
in a preceding study of the VM/370 system [Rossetti 82], which showed a
strong relationship betueen softuare failures and interactive workload.

Table 1 provides more detailed statistics for the system. The table

gives the mean, standard deviation, maximum and minimum value for the

T PR S

PERCENTAGE

14

(1Y
ase
e
LITY
oea
XY
cen

EATNNE £ SN 3 §

Figure 4: Hour of day plot of softuare errors

TABLE 1

Statistics on softuare errors

Time Betueen Errors (Hours)
EARLY LATE COMBINED
(3 months) (10 months) (13 months)
Mean 7.5 24.4 17.2
Standard deviation 22.1 86.6 67.6
Minimum 0.0 0.0 c.0
Max imum 358.0 ’ 1704.0 1704.0
Median 1.8 5.8 3.2
80th Percentile 15.4 48.5 34.7 '

!

15

time betueen clustered errors (TBE). Note the dramatic improvement in
the mean time betueen errors, betuween the EARLY and LATE periods.

Table 2 provides an analysis of the various error detection mecha-
nisms. It is found that software was the main detection mechanism
(53%2), followed by harduare (32%).

The next two sections investigate the nature of the errors and their
impact on the system. Section 6 provid;s statistics on error categories
and on recovery actions taken by the system. Section 7 relates these

errors to the job in execution at the time of the error.

TABLE 2

Type of error detection

EARLY LATE COMBINED
TYPE Freq. % Freq. % %
S/W Detected 391 56.2 438 50.6 83.1%
Hs7W Detected 192 27.6 315 36.4 32.5
Lost Record 110 15.8 112 12.9 14.2
Operator Detected 2 0.3) 0.1 0.2

(e

16

6. ANALYSIS OF THE DATA

This section investigates the nature of the errors and how they are han-
died by the system. In particular, the following questions are consid-
ered:

1. uWhat are the most common error categories?

2. How good 1is the system at recovering from different types of

errors?

3. What is the impact of errors on the system?
Six error categories were defined. To each category, a measure of its
severity was ascribed, and the frequency of its occurrence uas deter-
mined. Finally, for each category the success or failure of the recov-

ery process was assessed.

6.1 ERROR CLASSIFICATION

In common with other analyses of this type, the error SYMPTOM codes pro-
vided by the system mere grouped into classes of similar problems. The
error classes were chosen by consulting wmith the CIT staff to determine
commonly encountered problems. In addition, other studies of this
nature were also consulted (e.g., ([Thayer 78], [Endres 75), {Rossetti
821). Finally, it was important to make sure that each error category
had a statistically significant number of errors in it.

Six classes of errors uere defined:

1. Control: indicates the invalid use of control statements and

invalid supervisor calls.

2. 1/0 and data management: indicates a problem occurred during 1/0

management or during the creation and processing of data sets.

m paneamib

17

3. Storage management: indicates an error in the storage alloca-
tion/de-allocation process or in virtual memory mapping.

4, Storage exceptions: indicates addressing of non-existent or
inaccessible memory locations.

5. Programming exceptions: indicates a program error other than a
storage exception.

6. Deadlocks: indicates a system or operator detected endless loop,
endless wait state or violation of system or user defined time
limits.

Data tagged "LOSTRECS" (Lost Records) were purged from the data set.
These accounted for 15% of the total. In addition, 1.3% of the records
had invalid or missing SYMPTOM codes and were also purged.

The next subsection discusses the error data and determines the
severity of each error category. The effect of the recovery process is
subsequently considered. Where significant, the tuo periods of study
are separately analysed so as to determine the differences in error

behaviour betueen employing one or two CPU’s.

6.2 ERROR STATISTICS
There are significant differences in the error distributions betueen the
tuo periods of study. As noted earlier the time between errors and the
error frequency uas considerably higher in the EARLY period (one over-
loaded CPU) than in the LATE period (two CPU’s).

Table 3 gives the percentage distribution of the errors during the
tuo analysed periods. On the average, the tuo major error categories

are storage exceptions (26%) and storage management (28%). Storage

-

-

18
problems decreased 1in absolute terms but not in percentage terms.
Monthly plots for these and other important error categories appear in

the Appendix.

TABLE 3

Distribution of error categories during the tuo periods

EARLY LATE COMBINED
Error type Freq. % Freq. % %
Storage management 215 36.7 159 21.1 27.9
Storage exceptions 115 19.6 229 30.4 25.7
Deadlocks 77 13.1 207 27.5 21.2
170 and data management 112 19.1 43 5.7 11.6
Programming exceptions 41 7.0 62 3.2 7.7
Control 16 2.7 47 6.2 4.7
Invalid 10 1.7 7 0.9 1.3
ALL 586 100.0 754 100.0 100.0

* Note that "LOSTRECS™ have been purged from this data set.

Recall that a major feature of the MVS operating system is the multi-
ple virtual storage organisation. Storage management is a high volume
activity and is critical to the proper operation of the system. One

might therefore expect its contribution to errors to be siginificant.

Thus, even though the absolute number of storage problems goes doun, the

-

19
fractional contribution remains high. Another reason for such a large
percentage of storage problems under increased workload was due to mish-
andling of harduare failures. The error detection mechanism on MVS is
not always able to diagnose software problems resulting from a harduare
failure.?

It can be seen from the table that resource management (control, 1I/0
and data management, and storage management) errors have significantly
decreased in LATE period, both in absolute and percentage (58% vs. 33%)
terms. The reduction in resource management problems in the EARLY
period is believed to be related to the reduction in workload per CPU
resulting from the introduction of the second CPU. This 1is also sub-
stantiated by the results, on the relationship betueen system activity
and software failures, reported in [Rossetti 82]. A possible explana-
tion is as follows: when the number of jobsteps handled by a single CPU
increases, the virtual and real storage management activity correspond-
ingly increases. A typical problem that occurs under these circumstan-
ces is in synchronization betueen routines, handling common data or con-
trol blocks. Examples of control blocks are the descriptors of program
address spaces. With increased levels of interactive loading, complex
states can occur, for which the integrity and consistency of such con-
trol blocks are not guaranteed, and a failure can occur.

It is also observed that deadiocks and exceptions increased in the
second period in percentage terms. In absolute values deadlocks and
exceptions do not exhibit a substantial difference betueen the tuo peri-

ods. These are in fact problems related to the program itseif and not

Z e believe this problem of harduare/sottware interface needs to be
studied in detail and will be the subject of another paper.

-~

r——

20
to the complexity of the workload. The Appendix provides plots for var-

ious error categories on a monthly basis.

6.3 ANALYSIS OF RECOVERY MANAGEMENT

The question addressed in this section 1is to determine which types of
errors the system is able to handle, and hou. The recovery process on
MVS is intended to isolate an error in order to preserve the system from
damage. Functional recovery routines (FRR’s) are provided for important
system functions [Auslander 81]. Thus we expec* that, the more severe
the problem, as far as the system rescurces and control structures are
concerned, the more likely it is that a recovery routine is provided.
Recovery of a program, e.g., the correction of the error is possible
only under certain circumstances. A frequent example is the occurrence
of an unpredicted state. In this case, re-establishing a suitable envi-
ronment and issuing a retry can get rid of the problem. In other cases
the system will try +to recover by terminating the task or even the job
in progress.

In order to evaluate the effectiveness of recovery management on MVS,
we commenced by investigating when recovery routines are specified and
why. Table 4 shows that recovery routines were provided for nearly 70%
of the reported problems. The percentage is more than 85% for deadlocks
and for storage and data management. For storage exceptions however

this percentage drops to 35.2%.

21

TABLE 4

Provision of recovery routines by error type

Error type Frequency Percent
170 and data management 142 91.6
Storage management 323 86.4
Deadlocks 244 85.9
Control 41 65.1
Programming exceptions 48 46.6
Storage exceptions 121 35.2
AlLL 933 63.6

Table S provides an analysis of system recovery management. GQOverall,
the percentage of successful retries is 36% of all errors. Task termi-
nations account for nearly 52% of all errors and job terminations for
12%. The percentage of retry is highest (65%) for storage management
errors.d Exceptions lead frequently to a task termination, even though
this does not imply termination of the job. beadlocks result in a sub-
stantially large number of job and task terminations (94% combined) and
only 6% retries. A program that exceeds its timing constraints or that
which indefinitely holds system resources is almost aluays terminated.

In fact, further processing could seriously damage the system.

3 This seems to indicate that such problems are often due to the ocecur-~
rence of a particular, unpredicted state. In this case, a simple
retry can be successful.

22
TABLE 5
Effectiveness of the recovery by error type

Error Type JOBTERM TASKTERM RETRY

% % %
Storage management 0.3 34.5 65.2
Control 0.0 42.9 57.1
170 and data management 1.3 55.5 43.2
Storage exception 0.6 73.8 25.6
Programming exception 0.0 83.5 16.5
Deadlocks 5.3 38.7 6.0
Al 12.2 51.9 35.9

Job or task terminations are potentially severe problems. The sever-
ity of the problem is best determined by uhat the system wuas doing at
the time of the error. Thus, in order to truly evaluate the effective-
ness of system recovery management, it is important to determine the
type and criticality of-the job in control at the time of the error.

The following section analyses the type of job affected by a reported

error.

23
7. RELATING ERROR TO SYSTEM FUNCTION

This section relates the errors and the result of the recovery process
uith the programs affected by the error. It is obvious that the termi-
nation of a job that performs a critical system function has a much more
severe impact on the system than a wuser or production job. In order to
understand this problem the following analysis was performed in close

cooperation with the CIT systems management staff.
1. Job Categories: Using the job name (at error occurrence) pro-

vided by the system, four job categories were defined, viz.

Supervisor (MVS) related jobs, Interactive jobs, Testing jobs,

and User/Production jobs.

2. Job Functions: These categories were further divided in three
groups of job functions: Critical (for system survival), Essen-
tial (uwould degrade but not crash the system) and Non-Essential
(to system survival). Most of the MVS and interactive jobs fell
in the critical group.

Interactive and Supervisor jobs are each involved in nearly 17% of
all errors. User and production account for 37?% of the problems; test-
ing jobs occur in 12% of the cases. No job names could be attached to
nearly 22% of the reported errors (unclassified)." Detailed tabulations
are given in the Appendix. It was noted that error involvement of MVS
and interactive jobs fell from 53% in the EARLY period to around 18% in
the LATE period. This compares favourably with the reduction in

resource management problems with the introduction of the second CPU.

* In these cases the job name fieid was missing or the error uas
reported by a functional recovery routine, and the name of the source
problem program was not available or the name of the job could not be
recognised.

24

The error categories were found to be uniformly distributed over both
the job categories and the job functions (see Appendix for tables). The
exceptions were "deadlocks™, which mainly occurred on non-essential jobs
(84%) and 1/0 and data management which occurred mainly on critical jobs
(77%). Table 6 evaluates the effectiveness of the recovery routines in
dealing with critical, essential and non-essential jobs. Retries
occured on 43% of errors involving critical jobs and for 68% on essen-
tial jobs. The worst figure for job terminations was on non-essential
jobs (23%).

Importantly, in over 50% of the cases uhere system critical jobs are
involved, task termination results. The task is a module of the criti-
cal job and usually system termination (recall that this is defined as a
failure) results. Similar, though slightly improved figures are found
for essential jobs. This points toward an inadequacy in recovery man-
agement, since one would like better recovery and far less task termina-

tions when critical and essentia)l jobs are involved.

Table 6 also shous that recovery routines were specified in about
65% of the errors uhere critical jobs were involved. In interpreting
this table recall that recovery is possible even when no recovery rou-
tine is provided through the Recovery Termination Manager. The percent-
age of failures 1in cases uwhere recovery routines uwere specified is 44%
versus 80% uhen no recovery routine was specified. This appears to shou
the FRR’s and ESTAE’s are having an effect in improving the system fault
tolerance but there 1is still considerable scope for improvement. For
essential jobs (where we expect degradation in service but not necessar-

ily a system failure) the percentage of failures where recovery routines

25
TABLE 6
Recovery management
Job Criticality and Type of Recovery
RETRY TASKTERM JOBTERM Frequency
2 % %
Critical 43.3 53.0 3.7 402
. Essential 68.6 23.5 7.8 51
Non-Essential 24.8 51.9 23.3 592
Effectiveness of Recovery Routines
Recovery Failures Failures
Routines (Recovery Routines (Recovery Routines
Provided Provided) Not Provided)
% % %
Critical 65.7 44.3 80.4
Essential 78.4 20.0 72.7

are specified drops to nearly 20% versus 72% where no recovery routines

are specified. Thus the recovery routines are doing a much better job

in dealing with essential than with critical jobs. In

like these figures to be reversed.

fact one uould

26
TABLE 7
Effect of recovery routines for critical jobs
Error Type Freq. Revy Routine Failures#*® Failureg**
Provided (Rcvy Routine (Rcvy Routine
Provided) Not Provides¥)
% % 2
Control 22 63.6 21.4 100.0%
Deadlocks 29 82.8 100.0 100.0
I1/0 and data 74 82.4 90.2 7.7
management
Storage 161 79.5 7.8 1.8
management
Storage 82 18.3 46.7 92.5
exceptions
Programming 3 64.5 80.0 63.6
exceptions
All 402 65.7 44.3 80.4
®* The number of observations was not statistically significant
(¢=4)
% Failure: Job or task termination on a critical job

Table 7 relates the provision of recovery routines to the specified
error categories when critical jobs are involved (i.e., potentially
serious system problems). 1t is found that recovery routines are most
effective in dealing with storage management problems (an important fea-

ture of MVS). When no recovery routines are provided, the probability

of a storage management failure is high (81%). The recovery routines

-

27

are uweakest in dealing with deadlocks, 1/0 and data managementS probiems
and programming exceptions. Thus it uwould appear that these are the
particularly vulnerable areas of the system ushere further attention
could be directed. In order to quantity the above figures we define and
evaluate measures of fault tolerance and reliability in the follouwing

section.

8. MEASURES OF SYSTEM FAULT TOLERANMCE AND RELIABILITY
This section evaluates the following measures using the collected data.
1. The mean time for error handling (MTEH) is defined as:
£ SPANGI)
MTEH = ——— 1
N

uhere:
SPAN(1) Length of Cluster i

N Number of Clustered Errors

2. The average (MFR) failure rate:

Number of Failures
MFR = (2)
Time Period of Measurement

where:
Number of Failures = No. of jobstask terminations®
of critical jobs

S Notice that, for 1/0 and data management. we have a strange situation
in that the system fails over 90% of the time uhen recovery routines
were provided versus only 7.7% when no recovery routine was provided.
This was caused by a particular bug. The RTM was able to successfully
retry and no recovery routine was inveolved. These retries have con-
siderably biased the statistics for this error category.

Recall that the termination of a critical job or its task (module)
almost aluays resuits in system failure and is defined as such.

-

28

3. The softuare fault tolerance (FT) (i.e., the probability of

recovery given that a software error has occurred):

Number of Failures

FT

n
—
1

(3}
Total Number of Errors

To obtain more detailed information, these measures uwere e;aluated for
each error category and for the tuo periods (uhere significant). The
results are shown in Tables 8, 9 and 10.

Table 8 on MTEH shous houw quickly the system 1is able to handle an
error. The result of the error handling process could be a successful
recovery or a termination (failure). The generally larger handling
times for critical jobs reflect the fact that not only is the system
attempting to isolate the error but also is trying to avoid termination.
Very long error handling times occur on storage exceptions (large clus-
ters). 1t wuwas found that many of these errors were due to hardware
problems. Refer to the Appendix for tabulations.

Table 9 calculates the failure rate ¢for each error category. The
average system failure rate was found to be 11.1 per 1000 hours in the
LATE period. Looking at the failure rate figures we notice a general
improvement betueen the two periods over all error categories. In the
EARLY period a high failure rate exists for management and storage prob-
lems. In the LATE period storage exceptions appear to be the dominating
error category. In general the failure rate ranges betueen 1.2 and 3.4

per 1000 hours.

TABLE 8

Mean time for error handling (Seconds)

29

EARLY LATE COMBINED
Critical 33.0 46.2 40.4
Essential 4.8 4.2 4.6
Non-Essential 13.8 40.0 26.4
TABLE 9

Average failure rate (Failuress/1000 Hours)

Error type EARLY LATE
Control 2.2 0.8
Deadlocks 4.5 2.6
170 and data management 21.0 1.1
Storage management 9.9 2.0
Storage exceptions 19.9 3.4
Programming exceptions 6.3 1.2
All 63.8 1.1

Table 10 presents the system

1t shous houw uwell the system handles all problems

fault tolerance under

tuo conditions.

.» regardless of

30

the type of job in control at the time of the error (all jobs). In
order to quantify hou well the system recovery management handles seri-
ous system problems, the fault tolerance measure (FT) was evaluated,

given that a critical job was in control at the time of the error. The

overail system fault tolerance to a softuare error is found to be 0.33.
The table shows that the system is weak in dealing with errors occurring
on critical jobs. This calculation uas also performed for each error
category. 1t is seen that the system deals best uwith storage management
and control problems. It is at its uweakest in dealing with deadlocks
and exceptions. The +figure for 1/0 and data management 1is also rather
lou. As expected the results match with the recovery management analy-

sis of the previous section.

TABLE 10

Fault tolerance

Error Type All Jobs Critical Jobs
Control 0.30 0.50
Deadlocks 0.90 0.00
170 and data management 0.42 0.24
Storage management 0.39 0.77
Storage exceptions 0.63 0.16
Programming exceptions 0.69 0.26
Al 0.88 0.43
t
.

1~

31
9., CONCLUSIONS

1t has been the purpose of this paper to present an analysis of softuare
related errors on the MVS operating system at CIT. Storage management
and storage exceptions were found to be the major error categories.
This uwas related to the criticality of the storage management activity
on the MVS system. The decreasing contribution, of these and other cat-
egories of errors, uas found to be related to the changes to the system
during the analysed periods, especially the reduction of workload per
CPU through the addition of a second CPU. The occurrence of softuware
errors closely matched the interactive workload on the system. This
compares quite favourably wuith the results on VM/370 reported in
[Rossetti 82].

Data on the recovery process shoued that recovery routines are pro-
vided on MVS mainly f{for those problems uwhich affect some system
resource. The fact that very few large error clusters occur shous that
the recovery process is reasonably successful in isolating a problem.
The large clusters that do occur are mainly due to the fact that the
e-ror detection on MVS is not always able to diagnose software problems
resulting from a hardware failure.

The effectiveness of error recovery uas measured with 'regard to its
intended purpose, i.e., to avoid system damage. The error severity (and
the effectiveness of recovery wanagement) uas evaluated by relating the
error occurrence to the type of program affected by the error. Data on
error recovery showed that the system fault tolerance almost doubles

when recovery routines are provided, in comparison with the case where

no recovery routines are available. The system recovery routines are

32

most effective 1in handling storage management problems (an important
feature of MVS). However, even when recovery routines are provided,
there is almost a 50% chance of system failure when critical system jobs
are involved. Thus there is still considerable scope for improvement.

Deadlocks, 1/0 and data management and exceptions are the main problem

areas. Deadlocks in MVS, it 1is felt, are best only be dealt with
through improved error detection. Here, both pre-checking and post-
checking of data structures could be a possibility. In the other cases

more robust recovery routines and better handling of harduare errors
could produce a substantial improvement. It should be noted however
that some caution is advised in applying the statistical figures calcu-
lated here to other situations.

Importantly, the results obtained in this paper demonstrate that it
is possible to derive quantitative measures for system fault tolerance
and recovery management. This information can be very valuable in pin-
pointing major problem areas where further work, oriented toward
enhanced recovery management, can be directed. It is suggested that
other systems be measured and analysed in this manner so that a uwide

spectrum of practical results on operational software are available.

10. ACKNOWLEDGMENTS
The authors would like to thank Prof. E.J. McCluskey for his interest in
this work and for extensive discussions during the period of this study.
Special thanks are extended +to Larry Rivers and Lincoln Ong at CIT for
providing valuable insight into the MVS system: to D.J. Rossetti, A.
Mahmood and Or. ©0.J. Lu for their careful reading of an early draft of

this paper.

1~

33

This work wWwas supported in part by the U.S. Army Research Otffice
under contract number DAAG29-82-K-0105, the Ugo Bordoni Foundation aﬁd
the Italian National Research Council (CNR). The vieus, opinions.,
and/or findings contained in this document are those of the authors and
should not be construed as an official Department of the Army position,

policy, or decision, unless so designated by other official documenta-

tion.

34

REFERENCES

[Auslander 81] M.A. Auslander, D.C. Larkin and A.L. Scherr, "The
evolution of the MVS operating system®, I1BM Journal of Research
Development , Vol. 25, No. 5, September 1981

[Butner 801 S.E. Butner and R.K. lyer, ™A statistical study of
reliability and system load at SLAC", Digest, Jenth International
Symposium on fault Yolerant Computing, October 19&0.

[curtis 80] B. Curtis, "Measurement and experimentation in software
engineering™, Proceedinags of the IEEE, Vol. 63, No. S, pp.
1144-1157, September 1980.

[Denning 803 P.J. Denning, ™On learning hou to predict”, Proceedinos of
the 1EEE, Vol. 68, No. 9, pp. 1099-1103, September 1980.

[Endres 75] A. Endres, "An analysis of errors and their causes in
systems programs"™, IEEE Irans. Softuare Engineerina, Vol. SE-1, No.
2, pp. 140-149, June 1975.

[Glass 80] R.L. Glass, "Persistent software errors", IEEE Jrans.
Software Engineering, Vol. SE-7, No. 2, pp. 162-168, March 1981,

[Goel 80] A.K. Goel, "A summary of the discussion on ‘An analysis of
competing softuare reliability models’"™, lEEE Trans. Software
Engineering, Vol. SE-G6, No. 5, pp. 501-502, September 1930.

[Hamilton 78] P.A. Hamilton and J.D. Musa, "Measuring reliability of
computation center softuare”, Proc. Ihird Int. Conf. Softuware
Engineering, Atlanta Georgia, pp. 29-36, May 1978.

[IBM 81] 1BM Corp., 0S/VS2 MVS, System Proqramming Library: MVS
Diagnostics Jechniques, Order No. GC28-0725, 1981.

[1BM 30] 1BM Corp., 0S/VS2 MVS, System Programming Library: Supervisor,
order No. GC28-1046, 1980.

[1BM 79] 1IBM Corp., 0S/VS2 MVS, System Programming Library: SYS1.LOGREC
Error Recording, Order No. 6C28-0677-5, 1979,

[Hecht 80a] H. Hecht, "Current issues in fault tolerent softuare”,
Proceedinas COMPSAC 80, Chicago Illinois, pp. 603-607, November 1980.

[Hecht 80b] H. Hecht, "Mini-tutorial on softuare relizcbility",
Proceedinas COMPSACL 80, Chicago Illinois, pp. 383-385, November 1930.

35

[lyer 82al] R. K. lyer, S. E. Butner, and E. J. McCluskey, "A
statistical failuresload relationship; Results of a multi-computer
study,” 1EEE Iransactions on Computers, July 1982.

[Iyer 82b] R.K. Iyer and D.J. Rossetti, "A statistical locad dependency
model for CPU errors at SLAC," The Dig. FYCS-12, Tuelfth
International Symposium on Fault Yolerant Computing, Santa Monica
california, June 1982,

[Littlewood 80] B. Littlewood, "Theories of software reliability: Houw
good are they and houw can they be improved?”, lEEE Trans. Softuare
Engineering, Vol. SE-6, No. 5, pp. 48%9-500, September 13980.

[Maxuell 78] F.D. Maxwell, The determination of measures of softuare
"relisbility, Final Report, NASA-CR-158960, The Aerospace Corporation,
El Segundo California, December 1978.

[Melliar-Smith 8§1] P.M. Melliar-Smith and R.L. Schuartz, "Current
progress on the proof of SIFT," The Diq. ETCS-11, Eleventh
International Svmposium on Fault Tolerant Computing, Portland, Maine,
June 1881,

[Musa 80] J. Musa, "The Measurement and management of softuare
reliability", Proc. IEEE, Vol. 68, pp. 1131-1143, September 1930.

[Rossetti 82] D.J. Rossetti and R.K. lyer, "Softuare related failures
on the IBM 3081: A relationship uwith system utilization”, Proc.
COMPSAC 82, Chicago Illinois, November 82.

[SAS 79] SAS User’s Guide, 1979 Edition., Sas Institute Inc., Raleigh,
North Carolina, 1979.

[Thayer 78] T.A. Thayer, M. Lipow and E.C. Nelson, Softuare

Reliability: Study of Larage Project Reality, TRW Series of Softuare
Technology, Vol. 2, North-Holland, 1978.

[Wensley 78] J. UWensley, et. al., "SIFT: Design and analysis of a
fault tolerant computer for aircraft control,” Proc. JEEE, Vol. 66,
No. 10, pp. 1240-1254, October 1978.

16 Appendix A

TABLES AND PLOTS

otaumncr

E=EARLY

L=LATE

LLLkL
[NYNNY Wi [YYNYY
[REY Y SRLLL [YYN1Y [YYNYY [INRNY
[USNNN (31NN RYLINE i LYNNYY [YVXYY [YENRY [A3YYS
[RYYUS LAALL (YR [TINNY (Y1IIRY ALALY (1YY ATV JYYNNY [YNNLY EYYTY
tidie Leakt [ITTTY teddk [Y3YYY FYTYEY okt ite [YYINY [IT7Y3 [LTYYY
ALLEL [YINNN el [YINNY [YNRNY SALAL [YVRNN [NNYYN (YISt [SYNYY Mg
ARd? AnSE amer Hrez «ver ey st Juny 1) L1} L1}
Figure 5: Frequency plot of resource management errors by month
RERANCY
T L34
T=CARLY
wn
[SYINY
it
(Y3958
[1IYYY [YYTYY
it [RTTY [YEVVY
FINNNN [Y1YNY ALLLL Wil .
1Y (Y38 [YENNY [SYNTY
(LY [SYSNY [YYYN S [SYNY (1YTTY
[YNYSN [SYNNN EYTUARY [YUSNN [TVRTY
AM ALy SLALL [VSNNY [YYRTY
FYYeYy e fryety ey (TS
BRALL LR LUYANY LLbLL (YNRNY Al
AL FYTYNY ALLAL (YN Y WAl [YUYNY [YNENY it
(V153N MEMLL [YYNNY [SANT S LAALL [EYINN ALLLL AL [YTYY wuaL -
[INNY [YI1YY [SY3VY [139% 9 1eede Lhake Wit FYYTYY FEreYs FYYVYY EYRVTY
(INISN [YYAYY [YENNY [SASNY 1INV [1YVYY [YUANY [AYAVY AL [YYYNY [SVIYY
[SYNNY LITNRY [INNSS AL AL Ml ALLAL [VYYTY (3% [SUENY
AL [YYST N [YENTY [IYINY [YTEYY [TIVEY s BRALSE i [ITYVY
LA [YVENN [YNNNY AL [YYTNY [I3NLY [EUNNY [IYRVY JURERY AL [LIVTY
(13339 Akt (NSNS LR [NNNYN ALLLL Wl RIVTTY [TARVY (V1NN [JVTLN
(31339 [YYINN (Y397 [IVVLY [N [SNVNN AL AR JYINEY [YTNYY [IYWNY
FITeYY [YYTYY it (13178 L137YY [IEINY [LTRTy Wwies hits [LTURY
ARy AnSe “osy e "<ver “over " S mea3 1] ampe)
Figure 6: Frequency plot of sterage and programming exceptions by month
o ey
»
[YYUNY
preerd E=EARLY
LYUREN
[YIVLN
" rerey L=LATE
(TSN [Y1RV Y
LSRN JYYIYNY
[Y311) (31119
(1IN [YYSNY
L Wit LYYNY (NN [YIYN Y [YSNNY
VIV LIYYNY AAML [NINVY [TIYYN (1YY
(YINTY (V1YY [YINNY [LINY Y LYANKY [YY¥NY [YINNY
SAAL [INNAY LYYNVY LYYNNS (NANNY [YYNNY LIVNNY YN RYYNNY
[YI3YY JYNYN Y X134 YNy et (Y3119 [Ty EYYERY Lhddd FEYEYY
2] [U3a) (2317% Y LIS FYeELY F1YYYy L YIELY EYTYYY Yy Yy ETYYYY
Y312 [YVYRY LINNNN (YNNNY (1IN W [YVE3Y [TYYYY [TYVYY [NYNAN
[YIY1N [YYYN Y [YNNNY [YYVVY [IYINY [YINRY ARLEL LYYSNY JUYNNY LLYRAY
EYTINY [YYNYY AYINVY LINNNY LAALL ALiLL FSYYAN LYANNY LYNNNY LYYYYY
(1YY [YNNEN [YEYNN [YNNNY YN [UEYNY [YSYY Y (XYY LLARL [TYNNY
" wish (INYNN [YPNY [TENTS [AYINS ALINYY VAN [YRINN [YSNYN LYYNNY
(13311 [YVYY N [YYXNN [INYY N [YYVNY (13789 AhLAL [YY8YY (Y3398 AL
(YIS (3N Y [IYRN (VYN AL JUYINY [IVYNN [1Y4Y [{YSNY 113N
AL AL [YYYN Y [Y1VNS [IYVYN AL [YYYNY [JANTY [SLYNS [TYNN (11818
(YY319 [YVIVY [YIVYY [YNNRY ALk (1311 Y [ITIN N 1YYV Y [YYUNY [NVANE (Y139
1] [YINNN [SY¥NY [SVINN [SNYYY [IINYY LTINS [YYINY FYSYRY JYRYNY ALEL [1YTVY
(YN LYTYR Y e Lt it thidt [YeYEY [YIE1Y [YTYVY [TYYYY LYy
[TINN [YYVEY (YUNS Y LYYYNY [XYYNY k. RYSYTRY [YINNY [UNENY [XYNNY JYRNEY
(VST [YANYY [ITYYN [YINNY [ISYNN AL [Y983Y [YYYY [YYINY [1YINE 111149
[YINRY e LYNYNY [XNRNN LINNE [YNRYN FY1NNY Wi FYSINY LIRINY [TIYVY
AN anst st "t ocret e oltet rL)] L4 1) L 1) Aty

Figure 7: Frequency plot of deadlocks by month

e

[~

37
TABLE 11
Job classification
EARLY LATE COMBINED
Job Type Freq. % Freq. %4 Freq. %
Interactive System 189 32.3 49 6.5 228 17.7
MVS System programs 124 21.2 91 12.1 215 16.0
System Testing 37 6.3 128 17.0 165 12.3
User and Production 121 20.7 306 40.6 427 31.9
Unclass/Invalid 115 19.7 180 23.9 295 22.0
TABLE 12

Job functions and type of error

Error Type Critical Essential Non-Essential
fFreq. % freq. % freq. 4
Control 22 40.7 7 13.0 25 46.3
Deadlocks 29 10.6 10 3.6 236 85.3
1/0 and
data management 74 77.1 1 1.0 2 21.9
Storage management 161 46.8 4 1.2 178 52.0
Storage exceptions 82 43.6 13 6.9 93 49.5
Programming exceptions N 42.5 s 6.9 37 0.7
All 402 38.5 51 4.9 582 56.7

33
TABLE 13
Mean time for error handling (Seconds)
Error Type Critical Essential Non-Essential
EARLY LATE EARLY LATE EARLY LATE

Control 16.3 0.0 7.5 3.8% No Obs. 127.6

Deadlocks 0.6 39.7 0.0% 0.0% 20.6 21.9

170 and data

management 17.5 17.5 0.0% No Obs. 53.7 31.0

Storage

management 29.2 35.4 40.3% 0.0% 1.9 42.8

Storage

exceptions 106.9 108.6 0.0? 4.6 0.8 62.2
‘. Programming

exceptions 15.5 2.0 0.0% 13.0% 0.0% 83.6

All 38.0 46.2 4.8 4.2 13.8 50.6

* The number of observations was not statistically significant

(<=4)

TABLE 14

Fault tolerance

39

Error Type Critical

EARLY TOTAL

Essential

EARLY TOTAL

Control 0.54
Deadlocks 0.00
170 and data management .08
Storage management 0.34
Storage exceptions 0.12
Programming exceptions 0.33

0.45

0.00

0.64

0.35

0.22

0.10

0.50%

0.25

0.00%

1.00%

0.75

0.67%

1.00%

0.25

6.00%

1.00%

0.78

0.50%

* The number of observations uwas not statistically significant

(<=4)

40

Appendix B

MVS ERROR DETECTION AND RECOVERY PROCESSING

8.1 ERROR DETVECTION
The supervisor in MVS offers many services to detect and process abnor-
ma{ conditions during system execution.

1. The harduare detects conditions such as memory violations, pro-
gram errors (arithmetic exceptions, invalid operation codes) and
addressing errors.

2. The softuare also provides detection of software problems.

. The data management and supervisor routines ensure that valid
data are processed and non-conflicting requests are made. Exam-

ples are the incorrect specification of a parameter in a control

structure or in a system macro, or a supervisor call issued by an
unauthorized program.

The installation might improve the system error detection
capability by means of a softuare facility called Resource Access
tontrol fFacility (RACF). The RACF is wused to build detailed
‘profiles’ of system software modules. These profiles are
defined in order to inspect the correct usage of system
resources.

The user might also define his ouwn detection mechanisms by

means of the Set Program Interruption Element (SPIE) macro. This

macro instruction detects programmer defined exceptions 1ike

r—-

41
using an incorrect address or attempting to execute privileged
instructions.

3. The operator might detect some evident error condition and decide
to cancel! or restart the job. For example, the operator can
detect loop conditions or endless uwait states.

A software record also contains the information about the event
(EVENT) that caused the record to be generated, and a 12 bit symptom
code (SYMPTOM) describing the reason for the program abnormal termina-
tion. This codes are issued by the system or by the problem program
that used an ABEND macro instruction. The system and user completion
codes appear together in the SYMPTOM field. User codes are meaningful
only for specific applications.

Table 15 describe the values assumed by the variable EVENT. Table 16
gives some example of common system SYMPTOM codes encountered in this
study. The detection mechanism and the action taken by the system are

also described. More than 500 different SYMPTOM codes are issued by the

system for a problem program.

42
TABLE 15

Event that caused program termination

vVariable EVERT

Values Meaning

MACHECK A harduware event caused a machine check that
could not handle the problem

PROGCHECK A program check interrupt occurred due to the
detection of some exception or to the violation
of some memory protection mechanism

TRSFAIL R translation error, e.g., an error occurred
during the storage allocation process

RESTART The operator pressed the restart key
ROUTABT A system service routine detected an invalid SVC
and issued an abnormal termination of the b |

program (ABEND)

ROUTSYVC A system routine issued an invalid supervisor ®
call (SveC)

PROGABT The program itself requested the ABEND

SYSABT The system detected a problem and forced a

program ABEND

e

TABLE 16

Examples of ABEND reason codes

43

Hex code

Explanation

System action

05A

071

oc1

. 020

A service routine that
handles real storage
deallocation received
an invalid address

The operator determined
that the program was in
a loop or endless uait
state

Operation exception: an
operation code is not
assigned

The error occurred during
the creation of a data set
due to the incorrect speci-
fication of some data para-
meter

The program that called
the service routine or

the routine abnormally

terminates

The operator pressed the
RESTART key

A program interruption
occurred; the task is
terminated if no routine
had been specified to
handle the interruption

The task is terminated
if no routine has been
specified for the
problem program

B.2

routine is available for the problem progranm,

error, the Supervisor gets control.

RECOVERY PROCESSING

gives control to the Recovery Termination Manager (RTM).

routine before processing the program termination.

Whenever a program is abnormally interrupted due to the detection of an
1¥ the problem is such that a fur-
ther processing could degrade the system or destroy data, the Supervisor
If a recovery

RTM gives control to this

Recovery is designed as a means by which the system can prevent total

loss.

The purpose of a recovery routine is to free the resouces kept by

S

a4

the failing program (if any), to locate the error and to request either
for a continuation of the termination process or for a retry. Recovery
routines are generally provided to cover all MVS functions [Auslander
81]. It 1is houever the responsibility of the installation or of the
user to write recovery routine for other programs.

More than one recovery routine can be specified for the same program;
if the Jlatest recovery routine asks for a termination of the program,
the RTM can give control to another recovery routine (if provided).

. This process is called ’“percolation’.

The percolation process ends if either a routine issues a valid retry
request, or no more routines are available. In the latter case, the
program and its related subtasks are terminated. The termination of a
program might imply the termination of jobstep. If a valid retry is
requested, a retry routine restore a valid status, using the information
supplied by the recovery routine{s), and can give control to the pro-
gram. In order for a retry to be valid the system should verify that
there is no risk of recurrence of the error to the same recovery rou-
tine, and that the retry address is properly specified. Figure 8 illus-

trates the steps in the recovery process.

é Traces of the recovery process are recorded on LOGREC. This includes
L

| the name and the type of the recovery routine which handled the problem
(RECNAME), the result (RESULT) of the recovery process and the impact

of the error on the related jobstep (JOBTERM). A description of these

fields is given in Table 17. Other data collected during the recovery

process, includes detailed program status information such as the con-
tents of registers and the program address space identifier. This can

be helpful in error diagnosis.

45

ABEND
CONTROL
RECOVERY
TERMINATION
PROGRAM MANAGER
(RTY)
RETRY RECOVERY TERMINATION
ROUTINES ROUTINES ROUTINES

|

-

Figure 8: Software handling of softuware errors on MvVS

TABLE 17

Data on the recovery process

Variable name Values Meaning
RECNAME 8 character Name of the recovery
. name routine which handled

the problem

RESULT RETRY The recovey routine
decide that a retry
might be successful

CONTTERM The recovery routine
asks to continue with
termination (this might
imply percolation)

JOBTERM YES/NO 1¥ JOBTERM=YES the entire
jobstep has to be
terminated

46

puring the recovery process the system basically attempts to maintain
operation despite an error. It is possible that the recovery process
itself encounters the same error. In this case, there exists the risk
of recursive recovery processes, or the generation of bad data. Houw~-

ever, such occurences can be detected by analyzing the SDWA field into

LOGREC. 1f the jobname for example is ‘NONE-FRR’, this indicates that
the record is generated by a functional recovery routine during a recov-
ery attempt. Finally, if the recording process was also aftfected by an

error, a LOSTREC value appears in the TYPE field.

ft-

maintain
process
the risk
. How-
eld into
tes that

a recov-

ed by an

